(i) 5a + 7b : 5a - 7b = 5c + 7d : 5c - 7d.
(ii) (9a + 13b) (9c - 13d) = (9c + 13d) (9a - 13b).
(iii) xa + yb : xc + yd = b : d.
If a : b = c : d, prove that:
(6a + 7b) (3c - 4d) = (6c + 7d) (3a - 4b).
Given, , prove that:
If ; then prove that:
x: y = u: v.
If (7a + 8b) (7c - 8d) = (7a - 8b) (7c + 8d), prove that a: b = c: d.
Given,
Applying componendo and dividendo,
Hence, a: b = c: d.
(i) If x = , find the value of:
.
(ii) If a = , find the value of:
(i) x =
(ii)
If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d), prove that a: b = c: d.
If , show that 2ad = 3bc.
If ; prove that: .
Given,
If a, b and c are in continued proportion, prove that:
Given, a, b and c are in continued proportion.
Using properties of proportion, solve for x:
If , prove that: 3bx2 - 2ax + 3b = 0.
Since,
Applying componendo and dividendo, we get,
Squaring both sides,
Again applying componendo and dividendo,
3bx2 + 3b = 2ax
3bx2 - 2ax + 3b = 0.
If , express n in terms of x and m.
Applying componendo and dividendo,
If , show that:
nx = my.
Applying componendo and dividendo,
No comments:
Post a Comment