Chapter 21 - Trigonometrical Identities (Including Trigonometrical Ratios of Complementary Angles and Use of Four Figure Trigonometrical Tables) Exercise Ex. 21(D)
Use tables to find sine of:
(i) 21°
(ii) 34° 42'
(iii) 47° 32'
(iv) 62° 57'
(v) 10° 20' + 20° 45'
(i) sin 21o = 0.3584
(ii) sin 34o 42'= 0.5693
(iii) sin 47o 32'= sin (47o 30' + 2') =0.7373 + 0.0004 = 0.7377
(iv) sin 62o 57' = sin (62o 54' + 3') = 0.8902 + 0.0004 = 0.8906
(v) sin (10o 20' + 20o 45') = sin 30o65' = sin 31o5' = 0.5150 + 0.0012 = 0.5162
Use tables to find cosine of:
(i) 2° 4’
(ii) 8° 12’
(iii) 26° 32’
(iv) 65° 41’
(v) 9° 23’ + 15° 54’
(i) cos 2° 4’ = 0.9994 - 0.0001 = 0.9993
(ii) cos 8° 12’ = cos 0.9898
(iii) cos 26° 32’ = cos (26° 30’ + 2’) = 0.8949 - 0.0003 = 0.8946
(iv) cos 65° 41’ = cos (65° 36’ + 5’) = 0.4131 -0.0013 = 0.4118
(v) cos (9° 23’ + 15° 54’) = cos 24° 77’ = cos 25° 17’ = cos (25° 12’ + 5’) = 0.9048 - 0.0006 = 0.9042
Use trigonometrical tables to find tangent of:
(i) 37°
(ii) 42° 18'
(iii) 17° 27'
(i) tan 37o = 0.7536
(ii) tan 42o 18' = 0.9099
(iii) tan 17o 27' = tan (17o 24' + 3') = 0.3134 + 0.0010 = 0.3144
Use tables to find the acute angle , if the value of sin is:
(i) 0.4848
(ii) 0.3827
(iii) 0.6525
(i) From the tables, it is clear that sin 29o = 0.4848
Hence, = 29o
(ii) From the tables, it is clear that sin 22o 30' = 0.3827
Hence, = 22o 30'
(iii) From the tables, it is clear that sin 40o 42' = 0.6521
sin - sin 40o 42' = 0.6525 -; 0.6521 = 0.0004
From the tables, diff of 2' = 0.0004
Hence, = 40o 42' + 2' = 40o 44'
Use tables to find the acute angle , if the value of cos is:
(i) 0.9848
(ii) 0.9574
(iii) 0.6885
(i) From the tables, it is clear that cos 10° = 0.9848
Hence, = 10°
(ii) From the tables, it is clear that cos 16° 48’ = 0.9573
cos - cos 16° 48’ = 0.9574 - 0.9573 = 0.0001
From the tables, diff of 1’ = 0.0001
Hence, = 16° 48’ - 1’ = 16° 47’
(iii) From the tables, it is clear that cos 46° 30’ = 0.6884
cos q - cos 46° 30’ = 0.6885 - 0.6884 = 0.0001
From the tables, diff of 1’ = 0.0002
Hence, = 46° 30’ - 1’ = 46° 29’
Use tables to find the acute angle , if the value of tan q is:
(i) 0.2419
(ii) 0.4741
(iii) 0.7391
(i) From the tables, it is clear that tan 13° 36’ = 0.2419
Hence, = 13° 36’
(ii) From the tables, it is clear that tan 25° 18’ = 0.4727
tan - tan 25° 18’ = 0.4741 - 0.4727 = 0.0014
From the tables, diff of 4’ = 0.0014
Hence, = 25° 18’ + 4’ = 25° 22’
(iii) From the tables, it is clear that tan 36° 24’ = 0.7373
tan - tan 36° 24’ = 0.7391 - 0.7373 = 0.0018
From the tables, diff of 4’ = 0.0018
Hence, = 36° 24’ + 4’ = 36° 28’
No comments:
Post a Comment