Tuesday, 7 July 2020

Chapter 24 - Measures of Central Tendency (Mean, Median, Quartiles and Mode) Exercise Ex. 24(B)

Question 1

The following table gives the ages of 50 students of a class. Find the arithmetic mean of their ages.

Age - Years

16 - 18

18 - 20

20 - 22

22- 24

24-26

No. of Students

2

7

21

17

3

Solution 1

Age in years

C.I.

xi

Number of students (fi)

xifi

16 - 18

17

2

34

18 - 20

19

7

133

20 - 22

21

21

441

22 - 24

23

17

391

24 - 26

25

3

75

Total

50

1074

Question 2

The following table gives the weekly wages of workers in a factory.

Weekly Wages (Rs)

No. of Workers

50-55

5

55-60

20

60-65

10

65-70

10

70-75

9

75-80

6

80-85

12

85-90

8

Calculate the mean by using:

(i) Direct Method

(ii) Short - Cut Method

Solution 2

(i) Direct Method

Weekly Wages

(Rs)

Mid-Value

xi

No. of Workers (fi)

fixi

50-55

52.5

5

262.5

55-60

57.5

20

1150.0

60-65

62.5

10

625.0

65-70

67.5

10

675.0

70-75

72.5

9

652.5

75-80

77.5

6

465.0

80-85

82.5

12

990.0

85-90

87.5

8

700.0

Total

80

5520.00

(ii) Short - cut method

Weekly wages (Rs)

No. of workers (fi)

Mid-value

xi

A = 72.5

di=x-A

fidi

50-55

5

52.5

-20

-100

55-60

20

57.5

-15

-300

60-65

10

62.5

-10

-100

65-70

10

67.5

-5

-50

70-75

9

A=72.5

0

0

75-80

6

77.5

5

30

80-85

12

82.5

10

120

85-90

8

87.5

15

120

Total

80

-280

Question 3

The following are the marks obtained by 70 boys in a class test:

Marks

No. of boys

30 - 40

10

40 - 50

12

50 - 60

14

60 - 70

12

70 - 80

9

80 - 90

7

90 - 100

6

Calculate the mean by:

(i) Short - cut method

(ii) Step - deviation method

Solution 3

(i) Short - cut method

Marks

No. of boys (fi)

Mid-value xi

A = 65

di=x-A

fidi

30 - 40

10

35

-30

-300

40 - 50

12

45

-20

-240

50 - 60

14

55

-10

-140

60 - 70

12

A = 65

0

0

70 - 80

9

75

10

90

80 - 90

7

85

20

140

90 - 100

6

95

30

180

Total

70

-270

(ii) Step - deviation method

Marks

No. of boys (fi)

Mid-value xi

A = 65

fiui

30 - 40

10

35

-3

-30

40 - 50

12

45

-2

-24

50 - 60

14

55

-1

-14

60 - 70

12

A = 65

0

0

70 - 80

9

75

1

9

80 - 90

7

85

2

14

90 - 100

6

95

3

18

Total

70

-27

Here A = 65 and h = 10

Question 4

Find mean by step - deviation method:

C. I.

63-70

70-77

77-84

84-91

91-98

98-105

105-112

Freq

9

13

27

38

32

16

15

Solution 4

C. I.

Frequency (fi)

Mid-value xi

A = 87.50

fiui

63 - 70

9

66.50

-3

-27

70 - 77

13

73.50

-2

-26

77 - 84

27

80.50

-1

-27

84 - 91

38

A = 87.50

0

0

91 - 98

32

94.50

1

32

98 - 105

16

101.50

2

32

105 - 112

15

108.50

3

45

Total

150

29

Here A = 87.50 and h = 7

Question 5

The mean of the following frequency distribution is . Find the value of 'f'.

C. I.

0 - 10

10 - 20

20 - 30

30 - 40

40 - 50

freq

8

22

31

f

2

Solution 5

C. I.

frequency

Mid-value (xi)

fixi

0-10

8

5

40

10-20

22

15

330

20-30

31

25

775

30-40

f

35

35f

40-50

2

45

90

Total

63+f

1235+35f

Question 6

Using step-deviation method, calculate the mean marks of the following distribution.

C.I

50-55

55-60

60-65

65-70

70-75

75-80

80-85

85-90

Frequency

5

20

10

10

9

6

12

8

Solution 6

Let the assumed mean A= 72.5

C.I

fi

Mid value (xi)

di=xi -; A

fidi

50-55

5

52.5

-20

-100

55-60

20

57.5

-15

-300

60-65

10

62.5

-10

-100

65-70

10

67.5

-5

-50

70-75

9

72.5

0

0

75-80

6

77.5

5

30

80-85

12

82.5

10

120

85-90

8

87.5

15

120

Total

80

-280

Question 7

Using the information given in the adjoining histogram, calculate the mean.

Solution 7

C.I.

Frequency

Mid value x

fx

15-25

10

20

200

25-35

20

30

600

35-45

25

40

1000

45-55

15

50

750

55-65

5

60

300

Total

75

2850

Question 8

If the mean of the following observations is 54, find the value of 'p'.

Class

0 - 20

20 - 40

40 - 60

60 - 80

80 - 100

Frequency

7

p

10

9

13

Solution 8

Class

Frequency (f)

Mid Value (x)

fx

0 - 20

7

10

70

20 - 40

p

30

30p

40 - 60

10

50

500

60 - 80

9

70

630

80 - 100

13

90

1170

Total

39 + p

 

2370 + 30p

 

Selina Solutions Icse Class 10 Mathematics Chapter - Measures Of Central Tendency Mean Median Quartiles And Mode

Here mean = 54 ..(ii)

from (i) and (ii)

Selina Solutions Icse Class 10 Mathematics Chapter - Measures Of Central Tendency Mean Median Quartiles And Mode

Question 9

The mean of the following distribution is 62.8 and the sum of all the frequencies is 50. Find the missing frequencies f1 and f2.

Class

0-20

20-40

40-60

60-80

80-100

100-120

Freq

5

f1

10

f2

7

8

Solution 9

Class

Freq (f)

Mid value

fx

0-20

5

10

50

20-40

f1

30

30f1

40-60

10

50

500

60-80

f2

70

70f2

80-100

7

90

630

100-120

8

110

880

Total

30+f1+f2

2060+30f1+70f2

Now,  and 

from (i)

using (i) and (ii)

Question 10

Calculate the mean of the distribution, given below, using the short cut method :

 

Mark

11-20

21-30

31-40

41-50

51-60

61-70

71-80

No. of students

2

6

10

12

9

7

4

 

Solution 10

Selina Solutions Icse Class 10 Mathematics Chapter - Measures Of Central Tendency Mean Median Quartiles And Mode 

No comments:

Post a Comment