Prove the following identities:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)
If and , then prove that:
q(p2 - 1) = 2p
If , show that:
If , show that:
If tan A = n tan B and sin A = m sin B, prove that:
(i) If 2 sinA - 1 = 0, show that:
sin 3A = 3 sinA - 4 sin3A
(ii) If 4 cos2A - 3 = 0, show that:
cos 3A = 4 cos3A - 3 cosA
(i) 2 sinA - 1 = 0
(ii)
Evaluate:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
Prove that:
(i)
(ii)
(iii)
(iv)
(v)
(i)
(ii)
(iii)
(iv)
(v)
If A and B are complementary angles, prove that:
(i)
(ii)
(iii) cosec2A + cosec2B = cosec2A cosec2B
(iv)
Since, A and B are complementary angles, A + B = 90°
(i)
(ii)
(iii)
= cosec2A [sec(90 - B)]2
= cosec2A cosec2B
(iv)
Prove that:
If 4cos2A - 3 = 0 and 0°A 90°, then prove that:
(i) sin3A= 3 sinA - 4 sin3A
(ii) cos3A= 4 cos3A - 3 cosA
4 cos2A - 3 = 0
Find A, if 0°A 90° and:
(i)
(ii) sin 3A - 1 = 0
(iii)
(iv)
(v)
(i)
(ii) sin 3A - 1 = 0
(iii)
(iv)
(v)
If 0° < A < 90°; find A, if:
(i)
(ii)
(i)
(ii)
Prove that:
(cosec A - sin A) (sec A - cos A) sec2A = tan A
Prove the identity (sin θ + cos θ) (tan θ + cot θ) = sec θ + cosec θ.
Evaluate without using trigonometric tables,
sin2 28° + sin2 62° + tan2 38° - cot2 52° + sec2 30°
sin2 28° + sin2 62° + tan2 38° - cot2 52° + sec2 30°
= sin2 28° + [sin (90 - 28)°]2 + tan2 38° - [cot(90 - 38)°]2 + sec2 30°
= sin2 28° + cos2 28° + tan2 38° - tan2 38° + sec2 30°
No comments:
Post a Comment